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Linearized solutions for the flow field of a rotating blade row in an inhitely long annu- 
lar duct are reviewed. An isolated rotor is assumed to operate in a uniform axial flow 
so that the disturbance field is steady in a blade-fixed co-ordinate system. Both three- 
dimensional and compressibility effects are included, but attention is confined to 
subsonic flows. Previously published source-flow solutions omitted a term which 
affected the thickness part of the rotor flow field constructed from them. Corrected 
source and rotor-thickness solutions are given, and then the source or monopole 
solution is used to form a pressure dipole solution. The rotor-loading contribution to 
the flow field is found by superposition of the revised dipole solutions. The present 
version of the dipole representation of the steady-loading field is shown to be equiva- 
lent to an existing vortex representation, but different from an existing dipole repre- 
sentation. The behaviour of the blade-surface pressure and velocity distributions is 
described for both the thickness and loading cases. Sample numerical evaluations of 
the surface quantities are presented. 

1. Introduction 
Increased emphasis on the reduction of the size, weight, and noise output of axial- 

flow turbomachinery demands improved understanding of the flow through high-speed 
fan and compressor blade rows. As more detailed questions are asked about modern 
blade-row performance, the essentially three-dimensional character of the flow takes 
on increased importance. The task of calculating the fully nonlinear, three-dimensional, 
viscous flow through interacting blade rows is a formidable one indeed. Consequently, 
some approximations are required in order to obtain a tractable model, the most 
familiar being the idealization of inviscid flow through a two-dimensional cascade. 
A linearized analysis of the steady, inviscid, three-dimensional flow through an isolated 
rotor contains important features not present in the corresponding two-dimensional 
cascade approximation. For example, though restricted to lightly loaded, thin blades, 
it does include disturbances induced by the trailing vortex wakes which result from 
spanwise variations in the blade circulation. 

The small-perturbation approach to three-dimensional compressor flows was begun 
by McCune (1 958a, b) who, in the spirit of linearized wing theory, separated the thick- 
ness and loading contributions to the rotor disturbance field. In  his original papers, 
McCune treated the thickness problem for the subsonic, transonic, and supersonic 
flow regimes. Later, Okurounmu & McCune (1970, 1974) employed a vortex represen- 
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tation of the blade row to solve the indirect lifting problem, deiined here to be that 
in which the disturbance field, along with the blade geometry needed to produce it, 
are determined from a prescribed distribution of blade loading. 

While the thickness and loading contributions to the rotor disturbance field can be 
treated separately in a linearized analysis, they are not entirely independent. In  
order that there be no loading contribution to the flow field associated with a given 
distribution of blade thickness, this thickness must be distributed about an unknown 
camber line. The camber lines required for the rotor to be unloaded must be deter- 
mined as part of the solution to the thickness problem, in much the same way as the 
camber lines corresponding to a specified loading distribution are computed. Erickson, 
Lordi & Rae (1971) presented results for thickness-induced camber liues at high sub- 
sonic tip speeds. They also have computed the camber lines required to produce given 
loading distributions, as have Okurounmu & McCune (1974). 

Recently, linearized analyses of three-dimensional compressor flow fields have been 
concerned with lifting-surface calculations for both steady and unsteady flows. In  
contrast to the indirect loading problem for steady flow, the direct problem refers to 
the situation where the blade incidence and camber lines are given, and the resulting 
blade loading must be determined. The solution of the direct problem, together with 
the solution of the thickness problem, permits computation of the aerodynamic and 
acoustic performance for a rotor row of given geometry at specified operating condi- 
tions. In addition to a predictive capability for steady flow at off-design conditions, 
the successful analysis of the direct lifting-surface problem provides a basis for 
examining three-dimensional flows which are unsteady in rotor co-ordinates. The task 
of calculating the unsteady blade loading produced by a prescribed upwash distribu- 
tion or small-amplitude blade motion is closely analogous to the evaluation of the 
steady loading corresponding to given blade camber lines. 

Frogress on the direct loading problem in steady flow has been reported by other 
investigators. McCune & Dharwadkar (1972) have obtained a solution using a lifting- 
line approximation. Namba (1972) has reported a direct lifting-surface analysis, 
including some numerical results. Inaddition, Namba and Salaun (1974) have extended 
the lifting-surface analyses to flows that are unsteady in rotor co-ordinates, and have 
presented results for the response of the rotor to inflow distortions (Namba 1977), 
and for the problem of blade flutter (Namba 1976; Salaun 1976). 

The present paper is an outgrowth of our own work (Homicz & Lordi 1979) on the 
direct lifting-surface problem. In the course of deriving the governing integral equation 
for the blade loading, we had difficulty reconciling the different formulations for the 
rotor flow field. In  their treatment of the loading contribution, Okurounmu 6 McCune 
(1974) use a vortex representation of the lifting surface; Namba ( 1972) uses a pressure- 
dipole approach. The disagreements encountered in the respective flow-field solutions 
prompted a complete review of the linearized analyses, and led to a revision of the 
fundamental source and dipole solutions. The purpose of this paper is to present this 
review and to resolve the discrepancies in the linearized solutions for the loading con- 
tribution to the steady flow through a compressor rotor. The rotor thickness contri- 
bution is discussed also, because it too is affected by the revised singularity solutions. 

In 0 2 the linearized equations for the three-dimensional, compressible flow through 
a rotor are reviewed, and a formal solution of them is obtained based on Green’s 
theorem. In 0 3, solutions are found for the disturbance fields of a point source of mass 
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FIGURE 1. Blade geometry and blade-fixed co-ordinate system. 

and a pressure dipole. Next, in $3 4 and 5 respectively, these singularity solutions are 
used as Green’s functions to determine the flow fields produced by rotor thickness and 
loading distributions. In $ 6, the expressions for the flow-field quantities at the blade 
surfaces are presented and are shown to display the correct discontinuous behaviour 
across the blade surfaces and trailing vortex wakes. The equivalence of the pressure- 
dipole representation of the lifting surface and the vortex theory of Okurounmu & 
McCune (1970) is demonstrated in $ 7 .  Results of sample calculations of the blade- 
surface quantities are described in (i 8. Then the status of linearized solutions for the 
flow through a rotating blade row is summarized. 

2. Derivation of model equations and Green’s function solution 
In this section, the linearized equations and a formal integral representation of 

their solution are developed for the flow through an isolated rotor row in an infinitely 
long annular duct. The key assumptions in the analysis are that the undisturbed 
axial velocity is uniform and subsonic, and that the disturbance field of the rotor is 
a small perturbation about the resulting helical inflow seen by an observer in blade- 
fixed co-ordinates. Both compressibility and three-dimensional effects are included. 
While not a fundamental restriction in the analysis, attention is confined to subsonic 
relative tip speeds. The required extensions to supersonic tip speeds are indicated by 
McCune (1958a, b) and by Okurounmu & McCune (1974). As a consequence of the 
linearization, the blade-surface boundary conditions can be separated into thickness 
and camber line contributions, and their associated flow-field solutions superimposed 
to find the overall disturbance field. This separation is effected by requiring the rotor 
blades to be locally unloaded in the thickness case and by assuming that the blades 
have vanishing thickness in the loading case. 

The geometry of the blade-fixed co-ordinates is illustrated in figure 1 for a rotor 
rotating in the negative 0 direction with angular velocity w. The full nonlinear equa- 
tions for the flow through such a blade row in a cylindrical co-ordinate system fixed 
to the rotor have been given by Wu (1952). These equations can be linearized by 
writing the velocity in blade-fixed coordinates as W = U, + v, where U, is the un- 
disturbed velocity, which has an axial component U ,  and a tangential component 
wr; v is the perturbation velocity with components v,, v,, v,. The fluid pressure and 
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n 

FIGURE 2. Blade surface geometry at fixed radius. 

density are expanded in a similar way; the undisturbed quantities are denoted by 
pm and pm, the perturbation quantities by p and p. Substituting these definitions into 
Wu’s equations and linearizing the result by neglecting the products of perturbation 
quantities leads to the following vector forms of the steady flow continuity and 
momentum equations, to first order: 

U,.Vp+pm(V.v) = 0, (1) 

(2) 

The momentum equation is easily written in component form for the cylindrical co- 
ordinates fixed to the blades. However, in the subsequent development of the rotor 
flow-field solution, it is convenient to work with co-ordinates along the undisturbed 
streamlines, and along the direction normal to both the streamline and radial direc- 
tions. Unit vectors in these directions are denoted s and n, as illustrated in figure 2, 
and the respective velocity components are v, and v,. In the ( r ,  s, n) co-ordinates, the 
momentum equations are 

(v . V) U, + (U, . V) v + 24v, e, - v, ee) = - ( l / p w )  Vp. 

pw U, &,/a8 = - a p p ,  

pw U, av,/as = - ap/as, 

p w  UR av,/as = - ap/an, 

( 3 4  

( 3 b )  

( 3 4  

where the directional derivatives a/as and 8 1 t h  are related to the partial derivatives 
with respect to 8 and z by 

a as = (E”+”/[1+(3]’, uae az 

an 

( 4 4  

These forms of the linearized momentum equations are useful in relating results 
for the pressure and velocity fields. For subsonic flow, where disturbances decay far 
upstream, ( 3 b )  can be integrated along the streamlines to obtain 

P = - Pm &v,- ( 5 )  
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The normal momentum equation (3c) plays a central role in the direct lifting-surface 
theory. It contains the upwash velocity, v,, which is related to the blade camber line 
in deriving the integral equation for the blade loading. 

The set of governing equations is completed by introducing the assumption that 
the disturbance flow is isentropic, so that 

P = (6) 

where a, is the undisturbed sound speed. From this basic set of conservation equa- 
tions, we can develop the governing equations for either the perturbation pressure 
or the velocity potential, the solutions of which can then be used to obtain the re- 
maining flow-field quantities. 

The governing equation for the perturbation pressure is derived by using (6) to 
eliminate the density in the linearized continuity and momentum equations. Then, 
combining UR 8/88 of the continuity equation with the divergence of the momentum 
equation leads to 

The velocity potential satisfies the same governing differential equation. The linearized 
momentum equations indicate that the velocity components m proportional to the 
gradient of the integral of the pressure along the undisturbed streamlines. Accordingly, 
if a scallar velocity potential, defmed such that v = Vq5, is introduced into (1) and 
(3b ) ,  the results may be combined with (6) to obtain 

The formal solution of the governing differential equation for q5 (orp)  is derived from 
Green's theorem, written for two scalar functions q5 and U, 

where the surface S encloses the volume V and v is the normal to the surface S directed 
into V .  The following development, while carried out for the velocity potential, 
applies as well to the pressure perturbation. 

The operator L is defined by writing (8) as Lq5 = 0, and then the Vaq5 and V W  
factors in Green's theorem are written in terms of L. Equation (9) becomes 

where we have introduced the undisturbed relative Mach number in blade-fixed co- 
ordinates, ME = UR/aaD. 

The second volume integral on the right-hand side can be rewritten as 
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In this form, the volume integral can be converted to a surface integral by applying the 
divergence theorem to the product of a scalar function and a vector, and the result 
used in (10) to obtain 

This relationship can be used to express the velocity potential in terms of surface 
integrals which bound the region of solution by the usual Green’s function technique. 
The scalar function G in (12) is chosen to be the Green’s function which is the solution 
to the equation 

L G ( r ,  r,) = 6(r - r,) (15) 

where 6 denotes the Dirac delta function and r and r, denote the observation and 
source points. If the integrations in (1 2) are taken to be over the source co-ordinates, 
and within the region of interest Lo#(ro) = 0, then the following integral expression 
is obtained for the velocity potential : 

The term #(r) is the result of integrating #(ro) L,G(r,  r,) over the volume, which 
requires that the Green’s function determined from (15) also have the property 

LoQ(r, r,) = a@,- r). (17) 

An alternative approach to the integration over the region containing the singular 
point is to exclude this point from the volume integral by surrounding it with a vanish- 
ingly small surface. Then the functions q5 and G are continuous and differentiable 
throughout the region of interest, and the volume integral in (12) vanishes. However, 
there would then be a contribution from the integration over the surface enclosing the 
point r = r,. It has been demonstrated, using the Green’s function determined in the 
subsequent section, that the integral over such a surface yields the same result m the 
volume integral over the delta function. That demonstration is quite lengthy and so 
the generalized function approach is used to handle point singularities where the pre- 
sentations are thereby shortened. 

In  the present application, the surfaces over which the integrations must be done 
in (16) include the blade surfaces, the duct walls, and the surfaces normal to the duct 
axis at large distances upstream and downstream of the blade row. The evaluation of 
the surface integrals is simplified considerably through the use of a Green’s function 
which satisfies the same boundary conditions at the duct walls as the velocity potential. 
Then the velocity potential for a rotor can be found by superimposing the solutions for 
singularities which are distributed only over the blade surfaces. In the next section, 
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the solutions for a point source of mass and a pressure dipole are found for the ducted 
geometry. 

3. Mass source and pressure dipole solutions 
The governing differential equation for the velocity potential given in (8) can be 

expressed in cylindrical co-ordinates by using (4a). Then, the velocity potential due 
to a source located at ro, e,, zo in a rotating reference frame and having a mass addition 
rate of pa Q satisfies the equation 

where M is the Mach number based on the undisturbed axial velocity (Ula,) and 
p2 = 1 - M2. In this form the homogeneous equation is separable and, as originally 
shown by McCune (1958a), it possesses the following eigenfunction solutions when the 
boundary condition of no flow through the walls is enforced : 

M a  wz wz 
$H = exp (ine) exp ( in - p - u h n k r )  Rnk(Knku)* 

The quantity R,, is a normalized combination of the Bessel and Neumann functions 
of order n as described by McCune ( 1 9 5 8 ~ ) .  Also u = r/rT and Knk is the Mh eigenvalue 
of the equations which result from the boundary condition that a$/& vanish at the 
duct walls. The eigenfunctions satisfy 

The hub-to-tip radius ratio is h = rH/rT and h,k is defined by 

with MT = wT/aw.  Transformed to duct-fixed co-ordinates, these homogeneous solu- 
tions represent the duct acoustic modes; equation ( 2 1 )  contains the so-called cut-off 
condition for the propagation of these modes. When MT > ,8(Knk/n), h,k becomes ima- 
ginary and the solutions in (19) correspond to propagating waves. The cut-off condition 
can be stated approximately as requiring that the relative Mach number at the tip 
radius must be supersonic for the source to excite propagating modes. Here we restrict 
attention to the subsonic case where the modes decay with distance from the source. 

In  order to  solve (18), the form of (19) suggests that we assume an expansion for + of the form 

where $8 will denote the solution for a mass source. Here k, = 1 for n > 0 but k, = 0 
for n = 0 in order to include the non-trivial zero eigenvalue required to make the 
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zeroth-order Bessel functions a complete set. In addition we introduce the expansions 
of the delta functions in terms of the azimuthal and radial eigenfunctions : 

1 *  
27~n,-oO 

S(0-0,) = - exp(in(0-O0)), 

Substituting these expansions into (lit), using the differential equation satisfied by 
the radial eigenfunctions, 

and making use of the orthogonality properties of the azimuthal and radial eigen- 
functions leads to 

where Rnk(vo) is introduced as a shortened notation for Rnk(Knkao). The solution of 
this equation for $nk(z) can be found using Fourier transform techniques. With the 
following transform definition 

taking the transform of (26) ,  solving for q n k ,  and taking the inverse transform yields 

The integral in (27 )  can be evaluated by residue bheory, the roots of the denominator 
being 

For z > zo the contour is closed in the upper half-plane and encloses the pole at 
E = &; for z < zo the contour is closed in the lower half-plane and encloses the pole 
at  E = &k. This procedure ensures that the solution decays rather than diverging for 
z + co (or for supersonic tip speeds, corresponds to outward-moving waves). 

The caae n = 0, k = 0 deserves special attention. For these values of n and k the 
integrand in (27 )  has a second-order pole at  E] = 0. The contribution from this pole is 
included in the contour which encloses the upper half-plane (corresponding to z > zo) 
and excluded from the contour enclosing the lower half-plane (corresponding to 
z < zo). This choice is made on the grounds that there can be no steady perturbation 
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at upstream infinity. Evaluating the integrals for &k and using the results in (22), 
the solution for the source potential is 

in(O-Oo)+--(z-zo)-- inMz w Whnk I z - z o l ] ,  (29) B2 u U 

where H(z  - zo) is the Heaviside step function. 
The first term in the source solution has been omitted in previous treatments. 

Except for the presence of this term, the above result can be integrated in the radial 
direction to recover the line source solution which McCune (1958a, b) used to solve 
the rotor thickness problem. The omission of this term in the mass source (or pressure 
monopole) solution also affects the fluid doublet (or pressure dipole) solution. The 
implications that omitting this term from the source and dipole solutions have for 
the rotor thickness and loading problems are elaborated upon below where those 
solutions are presented. 

Several checks were made on the revised source solution. The first test made on 
the solution for q5* was to substitute it back into (18), and to verify that it was indeed 
the correct solution. In  addition, the pressure and velocity fields associated with the 
mass source solution were obtained from the velocity potential, and it has been verified 
that the solution displays the properties of a mass source. The linearized expression 
for the mass flux through a small surface surrounding the source, when integrated 
over the surface, results in a value of pmQ for the rate of introduction of mass. 

In addition to the demonstration of mass conservation for the above control volume, 
a similar check has been made for the control volume bounded by the walls and the 
surfaces normal to the duct axis at z = & a. It also has been shown that the results for 
the flow field of a point source satisfy the axial component of the linear and angular 
momentum balances for this latter control volume. The expressions for the mass 
addition rate, axial force, and axial component of the torque on the fluid in this 
control volume are given in appendix A. For the source solution, the expected results 
of p,Q, pm UQ, and paor: Q are obtained for these quantities. 

The mass source solution can be used as the Green’s function, and the solutions 
superimposed to represent the flow about a non-lifting rotor. The velocity potential 
of a fluid doublet could be obtained from that for a source in the conventional way, 
and then the flow field produced by rotor loading found by superposition of these 
doublet solutions. However, it is more convenient to treat the loading case in terms 
of the perturbation pressure because the blade boundary conditions are expressed in 
a simpler form and, further, integration over the blade wakes is avoided. Here the 
Green’s function is interpreted as a pressure monopole and it, in turn, is differentiated 
to  find the disturbance field of a pressure dipole. The pressure field of a lifting rotor 
can then be found by superposition of the pressure dipole solutions. 

Since the rotor pressure field satisfies the same equation as the velocity potential, 
the solution for a pressure monopole is mathematically the same as the solution for a 
mass source. The corresponding dipole solution is found by differentiating the mono- 
pole solution. If the pressure monopole is to be used as the Green’s function in the 
formal solution for the pressure, then the required orientation of the dipoles is normal 
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to the blade surfaces or, in the linearized analysis, to the undisturbed stream direction. 
For a dipole of strength D located at the point ro and oriented in the positive no 
direction shown in figure 2, the pressure field p D  can be expressed as 

where G(r, ro) is the source (or monopole) solution given in (29) with unit strength. 
Performing the indicated operations in (30), 

inM2 w 
in(8-O0)+-- (2 -zo)  - - 

Pa u 
As with the result for $8, this solution for p D  has been substituted into the governing 
differential equation to verify that it is the correct solution. Forming the quantity 
QD yields the result 

bD = D - [T;l &(r - 7,) qe  - 8,) ~ ( z  - zO)] ,  (32) 
a 

an0 

when the series expansions in (23) are used for the delta functions. 
The velocity components associated with the dipole field are obtained by integrating 

the momentum equations (3) along the undisturbed streamlines. Consistent with our 
generalized-function approach in treating singular points, a delta-function body 
force is included in the momentum equations. Then, the resulting expressions for the 
velocities are valid everywhere in the duct, including points which lie on the stream- 
line that passes through the dipole location. Otherwise, the expressions would not be 
valid in a small region enclosing this streamline. 

The dipole exerts a force per unit volume on the fluid, FD, which is in the negative 
n direction and expressed by 

FD = - nDr;lS(r - ro) 6(8 - 0,) 6(z -zo) .  (33) 

The streamwise velocity component is simply proportional to the pressure by (5 ) ,  
which was derived by integrating the streamwise momentum equation. Integrating 
the radial and normal momentum equations along the undisturbed streamlines yields 

( 3 4 4  

The expressions for ( w ~ ) ~  and ( v ~ ) ~  can both be written in terms of the integral of p D  
along the undisturbed streamlines. The integration is done by expressing ds in terms 
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of dz, using the fact that along the undisturbed streamlines 6 - wz/U and r remain 
constant. The result of integrating the expression for pD along the streamlines is 

1 + (w0 /U)2  2inhnkH(z-z0) 

wOIu 1 (n2/fi44) + h i k  

The expressions given for the velocity components in (34) have been formed and, 
using the formulae given in appendix A, it has been verified that the dipole solution 
possesses the appropriate properties of not introducing any mass into the flow, and 
exerting a force D on the fluid. In  the next two sections, the source and dipole solutions 
in (29) and (31) are used aa the Green's functions to construct the flow field produced 
by a rotor with distributed thickness and loading. 

4. Flow field of a non-lifting rotor (thickness problem) 
In  the previous two sections, the foundation has been laid to develop the solution 

for the thickness contribution to the flow field of a rotor in an annular duct. The source 
solution given in (29) can be used, with unit strength, as the Green's function, G(r, ro), 
in the integral representation of the velocity potential in (16). The integrations in 
(16) must be done over the following surfaces: (i) the duct walls, (ii) the surfaces normal 
to the duct axis at large distance from the rotor, and (iii) the blade surfaces. Along the 
inner and outer duct walls the boundary condition on &r0) is that the normal deriva- 
tive vanish corresponding to no flow through the walls. Since the Green's function 
we have found satisfies the same boundary condition, the first integral in (16) vanishes 
for this surface. For the outer wall vo = - e, while for the inner wall vo = e,. From (14) 
we see that vo. A = 0 along both the inner and outer walls, and so the second integral 
in (16) also vanishes at the duct walls. 

For the surfaces normal to the duct axis at zo + + co and zo + - co, vo is - e, and 
+e, respectively. Over these two surfaces the sum of the two integrals vanishes 
because of the properties of the integrands. Consider the integrand a t  zo + + CQ first. 
In this case z < zo and so all the terms in G(r, ro) and its derivatives decay exponentially. 
Since q5(ro) and its derivatives must be bounded, the integrand vanishes as zo -+ + co. 
Next, considertheintegrandevaluatedatzo+ -a. Herez =- z,andthen = 0, k = Oterm 
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contributes to both G and aG/azo; the remaining terms in G ,  aGlaf3, and aG/&,, decay 
exponentially. For subsonic flow, q5 and the velocity components obtained from its 
derivatives are required to vanish far upstream of the blade row. Note that G diverges 
linearly as zo +. - 03 and so the velocity field must fall off faster than this in order for 
the integrand to vanish. We shall see that the velocity field decays exponentially up- 
stream of the rotor. Hence, the integrands vanish for zo + - co also. 

In  the linearized analysis, the blade row is assumed to make only a slight perturba- 
tion of the free-stream flow. Consistent with this assumption, the blade surface 
boundary conditions are applied along the undisturbed stream direction. In this 
approximation, the normals to the upper and lower blade surfaces are, respectively, 
vo = & no = & (~os$~e , -  sin$oez), where $,, = tan-l (wro/U) .  It can be seen that 
vo. A vanishes and thus, in the linearized approximation, the second integral in (16) 
contains no contribution from the blade surfaces. 

The separation of the rotor flow field into the thickness and loading contributions 
is made by prescribing that there be no pressure difference across the blade surfaces 
in the thickness case, or that the blades are locally unloaded. If the pressure is con- 
tinuous across the blade surface, then vs and # are also. Hence, because of the opposite 
signs of aG/av, on the upper and lower surfaces, only the part of the integrand con- 
taining Gaq5/avo contributes to the integration over the blade surfaces. Thus, the 
expression for q5 has been reduced to 

$(r) = lSB G(r, rO) A (36) 

where SB denotes the surface area of the rotor blades projected on the undisturbed 
stream surface, and A(aq5/ano) represents the difference in normal velocity across each 
blade surface. This expression is the same as the familiar result in isolated airfoil 
theory that the effects of wing thickness can be represented by the superposition of 
sources whose strength is equal to the discontinuity in vn at each point. 

The linearized form of the blade boundary conditions is 

v; = u,aq,/as, v’, = ~ , a q ~ / a s ,  (37) 

where q,, and ql are the distances to the upper and lower surfaces, measured normal to 
the undisturbed stream direction s. The quantities qu and ql can be expressed in 
terms of a blade thickness and a blade incidence plus camber line in the conventional 
way, as illustrated in figure 2. However, for a rotor, the blade thickness and camber 
are not independent because, as noted earlier, in order for the blades to be unloaded 
they must be cambered to account for loadings which would otherwise be induced by 
blade interference effects. If t (s,  r )  represents qu(s, r )  - ql(s, r ) ,  then 

7;1u(8, r )  = Yc(8, r )  + r ) ,  

V l ( S ,  r )  = %@, r )  - w, r ) ,  (38) 
where qc(s, r )  is the camber line, which consists of two parts, a thickness part and a 
loading part. The discontinuity in the normal velocity across the blade surface is then 
related to the thickness distribution by 

A v ~  = U,at/aS. (39) 
For a rotor with B equally spaced blades, the blades lie on the surfaces 

6 = 2 j n / B ,  j = O , l ,  ..., B-1 ,  
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where 6 is the helical variable which is defined by 

The element of blade area in the constant-g surface is 

c; = e - w z / u .  

dSB = [1+ ( w T ~ / U ) ~ ] + ~ T ~ ~ Z ~ .  

Expressed in the r,  5, z co-ordinates, the velocity potential is 

where the blade leading edges are located at zo = 0 and, while not crucial to the ensuing 
analysis, it is assumed that the axial projection of the blade chord is a constant, c,. 
Introducing the expressions for Avn and Q (or $,), and performing the summation 
over the number of blades by using the identity 

where m is an integer, the result for the velocity potential becomes 

We have introduced the notation 

with the + sign applicable for z > z,, or sgn (z - zo) = + 1. 
Having this solution for the velocity potential, the other flow-field variables can be 

found by taking the appropriate derivatives. The results for the velocity components 
are given in terms of v,, vn, and vr, which are related to q5 by 

v, = 84/88 = [ 1 + (or /  u)2]-+ - 
dz I r . t '  

vr = a#/ar. ( 4 6 4  

The pressure is simply proportional to v, by ( 5 ) .  The resulting expressions for the 
velocity components are 

[:I- 
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where 
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v =  -utan$, w = 0, 

These results for the thickness contribution to the rotor flow field are valid through- 
out the duct. The factors u and v derive from the term omitted in the source solution 
in previous treatments and their impact on evaluations of these expressions will be 
discussed in 8 6. 

5. Flow field of a lifting rotor (loading problem) 
The determination of the pressure field produced by a lifting rotor closely parallels 

the solution procedure for the velocity potential in the thickness problem. The Green's 
function is the same, though now its interpretation is in terms of a pressure monopole. 
The formal solution for p is identical with that given in (16) for 9, except for the 
replacement of 9 with p .  In addition, both of the integrations over the duct walls 
and the surfaces at zo = & 00 vanish as before, as does the integration of v . (A@) over 
the blade surfaces. The remaining integral over the blade surfaces distinguishes the 
lifting case from the thickness case. Here the magnitude of ap/ano is the same on both 
sidesofthe blades because v, must be continuous. Since the normals to the upper 
and lower surfaces lie in opposite directions and G(r,ro) is continuous across the 
blades, the integral of Gaplav, over the blade surfaces vanishes. Thus the integral 
representation of the solution for the pressure field reduces to 

r)(r) = ISBAp(.O) aG/anOdSB~ (49) 

where 
Ap = p(roy zo, 6 = 2nj-/B) -p(ro, zo, 5, = 2nj+/B) (50) 

so that Ap is defined aa a positive number. 
If we substitute the pressure dipole solution (equation (31)) with unit strength for 

aB/an, and, exactly as was done for $ in the thickness problem, carry out the summa- 
tion over the number of blades, we get the following result for the pressure field of the 
rotor 
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where we have introduced 

and the quantities A&Bk and Vm,& are defined in (45) and (48). 
The finst property of this solution to be examined is the limiting pressure rise 

between points far upstream and far downstream of the blade row. Since for subsonic 
flow the solution decays z + -00, the limiting value of the static pressure rise is 
simply the limiting value of p for z + + 00. All terms except the fmt decay and SO 

This result agrees with that obtained from the vortex theory of Okurounmu & McCune 
(1970). In  the present formulation its origin is in the n = 0, k = 0 term in the dipole 
solution. Namba (1972) reports a limiting static pressure rise which differs from (53) 
in two respects. First of all, he finds a non-vanishing pressure perturbation for z + - 00. 

Also, his result contains a 'scale factor' which introduces an additional radial depen- 
denceintotheintegrationsoverradiusin (51) and(53).Whilethisscalefactorapproaches 
unity in the two-dimensional limit of high hub-to-tip ratios h, its radial variation is 
significant for lower values of h. For example, for a tip stagger angle of 45O, it varies 
by a factor of 2-4, between the hub and the tip for h in the range of 0.4 to 0.6. Based 
on the tests we have made on the solutions, we have concluded that this factor should 
not be present. 

In  the pressure dipole representation of the blade row, the velocity field must be 
found by integrating the momentum equations along the undisturbed stream direction. 
The streamwise velocity perturbation v, is found from (5). If is expressed in 
terms of the derivatives [a/az],, and [a/a5],,, then integration of the normal momen- 
tum equation (3 c) along the undisturbed streamlines yields 

(54) 
where I(r ,  5, z) is defined by 

and zr is a dummy variable of integration. In keeping with the generalized function 
approach to the singularities, a body-force term representing the blade forces FB has 
been included. Since this force acts normal to the undisturbed stream direction in the 
linearized theory, it appears only in the v, expression. This contribution to v, is 

2 B-1 
8(c-2j7r/B)jca 0 Ap(r ,z ' )H(z-zr)dz ' ,  (66) 

PmURr 5-0 

where we have accounted for the fact that the blades are located on the surfaces 
5 = 2j7r/B between the axial stations z = 0 and z = c,. As we shall see, this term will 
be cancelled by other terms in v,. For now the remaining terms in v, will be designated 
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v:. After evaluating the integral of the pressure indicated in (55), the result can be 
combined with that for p according to (54) in order to obtain vk : 

The expression for v, which results from integrating the radial momentum equation 
(3a) is 

which,,upon using the result for I, is 

exP [hkBk(Z - 20)1) A I ] ( r O ,  zO) d20 drO' (59) 

Particular note should be paid to those terms in v, and v, which do not decay down- 
stream of the rotor. These terms, which are present within the blade row and down- 
stream of it, represent the contribution of the trailing vortex wakes to the velocity 
field. The flow field produced by these wakes has a helical pattern and, aa a conse- 
quence of the linearization, the wakes coincide with the undisturbed stream surfaces 
on which the blades lie. There are no wake terms in p or v,, which should be con- 
tinuous across these surfaces. 

6. Behaviour of the velocity components at the blade surfaces 
Many applications of the foregoing analyses require the evaluation of the blade- 

surface velocity components or pressure distribution for which expressions are de- 
rived in this section. The equations given above for the disturbance velocity fields 
contain doubly infinite series expansions in the duct eigenfunctions. In order to 
demonstrate that the velocity components display the correct behaviour at the blade 
surfaces, the convergence properties of these series need to be considered. Terms in 
the m summations which are of order (mB)-l are expected to lead to  divergent series, 
or series which do not converge uniformly. The manipulations performed below are 
aimed a t  identifying those terms. Furthermore, within this group of terms, we wish 
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to isolate a series for which the k summation can be done analytically and for which 
the m summation does not converge uniformly for all values of the 6 co-ordinate. It 
can be anticipated that such series produce the discontinuities in the surface quantities 
which occur as changes in 6 are made which correspond to crossing a blade surface. 
For the remainder of this section our attention is confined to points within the blade 
row, i.e. for 0 < z < c,. 

The identification of the discontinuous terms in the expressions for the surface 
velocity components depends on the evaluation of the doubly infinite series S(r,C) 
defined by 

Substituting (21) for hmBk in the bracketed factor, adding and subtracting the quantity 
(ur0/U)' / [1+ ( w , / U ) ~ ]  to this factor, and doing the ro integration term by term, the 
function S(r, C) becomes 

Lr?l' -rt (KmBk/mB)al L1 + ( W T O / U ) 2 1 - 1  BmBk(gO)f(rO) drO. (61) 

The k summation in the first line of (61) is just the Fourier-Bessel expansion for 
the bracketed function in terms of the radial eigenfunctions. Performing this summa- 
tion and using the equation satisfied by the radial eigenfunctions (24) to substitute 
in the second integral, S(r, 6)  can be written 

Now, the eigenvalues K m B k  are all greater than mB, being O(mB) for large mB, and 
the remaining integral can be integrated by parts to give 

The integrated term vanishes because each radial eigenfunction identically satisfies 
the boundary conditions at the duct walls. Another integration by parts could be 
done but it does not appear worth while. The important point to make is that each 
m, k term of the double series in (62) is at  most of order (mB)-2. Here again this series 
is then a regular series, and the first series in (62) is the only remaining contribution to 
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S ( r , c )  which could contain a discontinuity; it is proportional to the Fourier series 
expansion of the generalized function, Yj, which is defined by 

This function was used by Reissner (1937) in his representation of a propeller wake. 
It has a jump of - 2n/B as 5 crosses a blade location, moving in the direction of 
increasing y. 

It can be shown that the Fourier series representation of Yj is 

With these results, the expression for S(r,  Q) becomes 

Using the above form for the generic series S(r,  5)) the specific series in each of the 
expressions for the velocity components are evaluated. First, we wish to show that, 
in the thickness case, v, is continuous across the blade surfaces. This demonstration 
also provides a check on the assumption that the blades are locally unloaded by virtue 
of the relationship between p and v,. 

6.1. Blade surface velocity components in thickness problem 

The fist step in examining the value of v, at the blade surfaces is to carry out an inte- 
gration by parts in the integral over zo. After the first integration by parts the expres- 
sion for v, is 

The coefficients in the series containing at/&, are inversely proportional to AmBk 

which is O(mB), but the exponential factors in these terms prevent the series from 
diverging, except as the leading or trailing edges are approached. There, unless the 
slope of the thickness profile vanishes, the series diverge. The divergence of these 
series produces the singularities in the pressure which typically occur a t  the leading 
and trailing edges of subsonic airfoils. The divergence of the surface pressure at these 
points is evident in the original results of McCune ( 1 9 5 8 ~ )  b ) ,  as well as in the surface 
pressure results accompanying the thickness-induced camber lines presented by 
Erickson et al. (1971). 

Each integration by parts over zo introduces another factor of (mB)-' in successive 
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terms of the double series. The second integration by parts yields integrated terms 
which are proportional to azt/az& evaluated at zo = 0, z, and c,. These terms are 
O[(mB)-2] and so the corresponding series are uniformly convergent. Hence, away 
from the leading and trailing edges, all the series in v, are uniformly convergent for 
all values of 6, including those at the blade surfaces. It can therefore be concluded 
that v, and p are continuous across these surfaces. The same is not true of v,, however, 
which must be discontinuous a t  6 = 2jn/B by an amount dictated by the boundary 
condition (39). 

We have already evaluated the v, contribution to the expression given for v, in (46), 
and shown it to be continuous. Any discontinuity in v, must then come from the 
84/86 contribution. After performing a single integration by parts on the zo integral 
in the expression for 84/86 and combining the result with (46 b)  to obtain v,, the 
result is 

where 

The first term in v, is obtained by identifying the series representation of the 
generalized function and contains the symmetric discontinuity which should occur 
in v,. It makes no contribution to the continuous part of v,, nor does the second term 
when evaluated at the blade surfaces. The remaining terms, which represent the 
continuous part of v, or the slope of the thickness-induced camber lines, are uniformly 
convergent away from the leading and trailing edges. The third term in the above 
expression comes from the n = 0, k = 0 term omitted from previous treatments of the 
thickness problem. The camber line calculations of Erickson et al. (1971) and the 
surface pressure calculations of McCune (1958a, b )  should be corrected for the pre- 
sence of these terms. They make no contribution to the disturbance field upstream 
or downstream of the blade row and, therefore, the acoustic calculations done with 
this analysis (Lordi 1971) are unaffected by their inclusion. 
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6.2. Blade surface velocity components in loading problem 

The blade-surface properties of the solution for the velocity field of a lifting rotor can 
be examined as was done for a non-lifting rotor, although the loading case is somewhat 
more complicated because of the presence of the trailing vortex wakes. Again the 
streamwise, normal, and radial components, v,, v, and q,, are considered. First the 
behaviour of v, is treated, followed by vr, with v, done last. 

Since v, is proportional top, it must contain a discontinuity across the blade surfaces 
which is in the same proportion to the blade loading, Ap. Therefore, showing that the 
solution for the pressure field contains the correct discontinuity is equivalent to de- 
monstrating the proper behaviour of v, at the blade surface. Again this is done by 
ordering the series expansions in (mB)-l and, in particular, isolating a series for which 
the k summation can be done and for which the m summation yields the generalized 
function &. 

As before, the first operation on the expression for p is to perform an integration 
by parts on the zo integral. The result, after some rearrangement and identification of 
the discontinuous terms, is 

The term containing the generalized function cj is the term which contains the 
discontinuity in p ;  all of the remaining terms converge uniformly for all [ away from 
the leading or trailing edge and, hence, are continuous across the blade surfaces. 
However, at the leading or trailing edge, one of the exponential factors in the inte- 
grated terms in braces approaches unity, and the series can diverge. At the trailing 
edge A p  should vanish according to the Kutta condition, and the convergence pro- 
perties of the series in p depend on the behaviour of A p  as z + ca. At the leading edge, 
the linearized analysis contains a singularity in the loading, and so the series can be 
expected to diverge there. When the first two terms are omitted, this expression for 
p is valid upstream (z  < 0) and downstream ( z  > ca) of the blade row. Thus, away from 
the leading and trailing edges, p (and hence v,) is continuous in these regions and, in 
particular, across the blade wakes. 

Next, the properties of the expression for the radial velocity are examined, focusing 
on the terms due to the trailing vortex wakes. The radial velocity is tangential to the 
wake surfaces and should be discontinuous across them. This behaviour can be demon- 
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strated simply, if we consider points far downstream of the rotor where all other terms 
except the wake term have decayed and (59) becomes 

Again using the seriea S(r, 5 )  to identify the discontinuous terms and introducing 
the blade circulation r which is defined by 

where y(r ,  9) is the local vortex strength, 

y(r, 8 )  = Avs = v,(g= 2nj-/B) -us([ = 2 ~ j + / ~ ) ,  (73) 
then 

The C j  term produces the expected discontinuity in v, across the wakes while the second 
term is continuous. Forming the difference in vr across the blade wake locations 
according to the same convention adopted for Av,, we get 

A v ~  = d r / d r .  (75)  

Notice that in this convention I' is negative when A p  is positive and work is done on 
the fluid. 

The final task of this section is to develop further the expression for the normal 
component of the perturbation velocity. The terms in v; (recall that the prime denotes 
that the blade force term is omitted) which represent the wake terms are labelled 
(v& and may be written 

where the prime on the m summation denotes that there is no m = 0 term. The k 
summation can be rearranged using the same techniques employed to evaluate the 
series function S(r,  5) .  This time the corresponding m summation can be evaluated, 
if the appropriate m = 0 term is added and subtracted, in terms of the series repre- 
sentation of a sequence of delta functions rather than the generalized function &.. 
When this is done the delta function terms so represented precisely cancel the blade- 
force term in v,represented as a volume distribution of dipoles. The resulting expression 
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for vn7 which now converges everywhere except near the leading or trailing edges, 
is 

The terms on the last two lines can be integrated by parts and then manipulated using 
the techniques of this section to demonstrate that v, is continuous across the blade 
surfaces, as it should be. The expression given above for v, is the starting point for 
our development (Homicz & Lor& 1979) of the governing integral equation in the 
direct lifting-surface theory of a compressor rotor. 

7. Equivalence of the dipole and vortex representations of the 
lifting surface 

The pressure dipole representation of the lifting rotor flow field, which has been 
used in the present work, can be shown to be equivalent to the vortex representation 
used by.Okurounmu & McCune (1970). In  order to show this, the present dipole 
representation is re-interpreted aa a vortex representation, to which it must be equiva- 
lent. The resulting vortex representation is then shown to be the same aa that of 
Okurounmu & McCune (1970). 

First, the velocity potential of a lifting rotor is written in terms of the pressure 
perturbation as follows: 

Substituting for p from (49) and interchanging the order of integration, 

Introducing the bound vorticity, y defined in (73), 

Now it can further be shown that 

J --m J B g  
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If we recognize that pD is mathematically equivalent to the potential due to a fluid 
doublet q5d and, by analogy with the development for unconfined flow (Ashley & 
Landahl1965), identify the potential due to an elementary horseshoe vortex q5,, with 
that due to the following doublet distribution, 

P r n  

then the velocity potential due to a lifting rotor can be expressed as the superposition 
of these elementary vortex solutions by 

Each elementary horseshoe vortex has an infinitesimally long, radially oriented bound 
element located at z,, r,, with the pair of trailing vortex filaments lying along the helical 
undisturbed streamlines. 

Okurounmu & McCune (1970) developed the solution for equally spaced, radially 
oriented vortex lines (and their associated trailing vortex wakes) which span the 
annulus. In  order to show the equivalence between the present formulation and theirs, 
the present doublet (dipole) solution is used to construct, first, a horseshoe vortex 
solution and then the solution due to B equally spaced, radially oriented vortex lines. 
The desired integral of q5d in (82 )  for q5,, was evaluated in our development of the dipole 
representation of the rotor; see (35). The potential due to the radial vortex lines is 
obtained from 

where 
carrying out the j summation, is 

is the circulation at  the radius r,. The resulting expression for &, after 

] - [' + (wo/ 'I2] i m B L B k  
W O /  u + GbBk 

(85)  

This result for the potential due to B radial vortex lines, although in markedly 
different form, can be shown to be equivalent to that of Okurounmu & McCune 
( 1 9 7 w h e n  notational differences are accounted for, the m = 0 terms in the above 
expression for q5r are easily shown to be identical to those in equation (8) of their 
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paper. The key step in demonstrating that the two results for q5r are equivalent is in 
showing that the terms representing the trailing vortex wakes are the same. These 
are the m 9 0 terms having no z dependence which are present downstream of the 
vortex lines. They are labelled 9, and will be shown to be identical to the wake poten- 
tial derived by Okurounmu & McCune (1970) from an entirely different approach. 

Using (21), the terms in q5w become 

Now the double summation is proportional to the series S(r, g) defined by (60) in the 
previous section. Introducing the addition and subtraction manipulation used there, 
& becomes 

The k sum in the first line of this equation is just the Fourier-Bessel expansion for 
I?@); the m sum is the series representation of the generalized function Cj. The second 
k summation in (87) can be identified with d[rodSn(r, ro)/dro]/dro, where &(r,r0) is the 
seriea defined aa 

and n = mB. Making these substitutions, 

The series in (88) has been summed by Salaun (1974) and the result is given in 
appendix B. The next step in the derivation of q5w is to integrate by parts in the second 
term of (89) and use the results given in (B 5 )  for Sn. Since its derivative vanishes at  
the duct walls and it is symmetric in r and ro, we get 

q5w = 
B 
2m - 6j + sin (mBC1 

mB 
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where umB = mBwr/U and the primes denote differentiation with respect to the argu- 
ment. After rearranging the ranges of the integrals between umBX and cmB,, the terms 
in braces can be identified with - r?j, xmB, where xmB is the wake function defined by 
Okurounmu & McCune (1970). Accounting for the difference in blade locations (theirs 
are a t  ((2j + 1)  m)/B, which introduces a ( - 1)m factor), the above result for q5w is then 
equivalent to theirs. 

It remains to be shown that the m + 0 terms in (85) which contain the exponential 
factors in z - zo are the same as the corresponding terms in (8) of Okurounmu & McCune 
(1970). This part of the demonstration requires the identification of the radial integrals 

as the coefficients of R,nB,(u) in the Fourier-Bessel expansions of the bound vorticity 
I',.and the wake function xmB respectively. The latter step follows from the above 
demonstration that the k series beginning on the second line of (87) is indeed propor- 
tional to xmB. The required identifications can be made if the factors in braces in (85) 
are rearranged using the addition and subtraction manipulation of the previous 
section. Then, having demonstrated that the fundamental singularity solutions used 
here are equivalent to those used by Okurounmu & McCune (1970), we have concluded 
that the expressions constructed from them for the rotor-loading flow fields are also. 

8. Sample numerical results 
Two examples have been selected to illustrate numerical evaluations of the expres- 

sions derived here. In  the first, calculations of thickness-induced camber lines are 
discussed. In  the second, lifting-surface results for the blade loading are presented 
and compared with the corresponding strip-theory values. 

8.1. Thickness-induced camber lines 
As first pointed out by McCune (1958a) and discussed here in 5 2, the effects of blade 
thickness and blade loading may be treated separately if the thickness is distributed 
about camber lines which cause the local blade loading to vanish. These thickness- 
induced camber lines may be computed by evaluating the expression given in (68) 
for the thickness contribution to the normal velocity component. 

When evaluated at the blade surface, the continuous part of v,, is proportional to 
the slope of the camber line (see (37) and (38)). As discussed below (68), the third 
term, which originates from the n = 0, k = 0 term in the revised source solution, was 
omitted in the thickness-induced camber-line computations by Erickson et aZ. (1971). 
The contribution of this term has been evaluated for one of their examples so that the 
significance of the correction can be seen. 

The case considered for evaluation has a nearly sonic inflow at the blade tips 
(MR = 0.98). The rotor has 64 blades, a hub-to-tip ratio of 0.9 and a value of c,/rT 
of 0.049. Each blade has a symmetric parabolic-arc chordwise thickness distribution. 
The maximum thickness-to-chord ratio decreases somewhat from a value of rH at 
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FIQURE 3. Thickness-induced camber line for parabolic-arc profile. - - -, Previous result 
(Erickson,Lordi &Rae 1971);---- , correction term introduced in present paper; -, corrected 
thickness-induced camber line. The parameters were B = 64, h = 0.9, CJTT = 0.049, M = 0.6, 
MT = 0.775, ME = 0.98, T/TT = 1. 

the hub to 0.87, at the tips. The blade ordinates computed at  the tip radius are shown 
in figure 3, normalized by the local blade chord c and a reference thickness ratio ro. 
(Previous treatments of the thickness problem used an incorrect weighting factor in 
the integration over radius. If the radial distribution of thickness is reinterpreted so 
that the integrals evaluated are correct, then ro is not the thickness ratio at the hub, 
as stated in the earlier work, but the ratio of the maximum thickness at  the hub to 
the axial chord projection.) In figure 3, the result reported by Erickson et al. (1971) is 
shown along with the correction derived here and the net result. It can be seen that 
the correction due to the revision of the source solution actually brings about a change 
in sign of the induced incidence part of the blade ordinate. The sign of the revised 
result for the induced incidence agrees with that computed for simple source-sink 
representations of a cascade of non-lifting blades (Erickson, private communication). 

The blade pressure distribution is also affected by the revision of the source solution, 
but not as significantly as the camber line. The correction to the pressure is proportional 
to the thickness distribution; it vanishes at  the leading and trailing edges and is 
symmetric about the midchord. The essential character of the thickness part of the 
subsonic pressure distribution, which is singular at the leading and trailing edges, is 
unchanged. 

8.2. Gifting-suvface calculations 
Starting from the expreclsion given in (77) for the loading contribution to the normal 
veloc,ity component, Homicz & Lordi (1979) have developed a lifting-surface analysis 
for the flow through an annular blade row. One of the numerical evaluations of that 
theory which best demonstrates the three-dimensional effects is presented here. In  
the case considered, the rotor blades are thin flat plates, twisted so that the angle of 
attack is 5 O  at each radial station. The number of blades is 30, the hub-to-tip ratio is 
0.6, and the ratio c,/rT is 0.1. The axial Mach number is 0-5 and, at the blade tips, 
the relative Mach number of the inflow is 0.707. The results obtained for the sectional 
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FIQURE 4. Lifting-surface results for flat plates at an angle of attack of 5". -, 3-D theory; , 
2-D theory. The parameters were B = 30, h = 0.5, C,/TT = 0.1, M = 0.5, MT = 0.5, M R  = 0-707. 

lift-coefficient, defined as the lift divided by +po3 Ug c, are shown in figure 4. The 
results of a strip-theory calculation are shown for comparison. The strip theory pro- 
vides a good approximation a t  mid-annulus, but substantially underestimates the 
loading near the hub and overestimates it near the tips. The difference in the behaviour 
of the three-dimensional and strip-theory results is a consequence of the trailing 
vorticity, which tends to reduce spanwise variations. This feature of the three- 
dimensional theory is discussed in more detail by Homicz & Lordi (1979) and also 
by McCune & Dharwadkar (1972), who treated the lifting-line limit. 

9. Summary 
The linearized solution for the three-dimensional, compressible flow through an 

annular blade row has been reviewed. Revisions have been made in singularity solu- 
tions superimposed to represent the blade thickness and loading contributions to the 
rotor flow field. A term previously omitted from the solution for a mass source affects 
the blade surface pressure distributions (McCune 1958 a, b) and thickness-induced 
camber lines (Erickson et al. 1971) presented previously for subsonic relative tip 
speeds. While the general character of the subsonic pressure distributions is unchanged, 
the computed corrections to the thickness-induced camber lines are more significant. 
For the case illustrated in the previous section, the correction results in a change of 
sign in the induced incidence part of the blade ordinate. 

The revised source solution has been used to form a pressure dipole solution, which 
in turn has been used to construct the rotor-loading contribution to the flow field. 
The present pressure-dipole representation of the lifting surface has been shown to be 
equivalent to the vortex representation of Okurounmu & McCune (1970, 1974). A 
direct lifting-surface analysis (Homicz & Lordi 1979) has been based on the present 
formulation. An example of the three-dimensional lifting-surface calculations dis- 
cussed in the previous section shows that the effect of the trailing vortex wakes is to 
reduce the spanwise variation of the sectional lift, in marked contrast to the corres- 
ponding strip theory. Also, direct lifting-surface calculations have been done for the 
same conditions specified in the inverse calculations done by Okurounmu & McCune 
(1974). The camber lines computed in the inverse problem were specified as input in 
the direct lifting-surface computations. It was reported previously (Homicz & Lordi 
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(1979) that good agreement was obtained for a case in which the circulation waa a 
constant, but not for a case in which the spanwise variation was prescribed in the 
design calculation. Additional calculations done since have shown good agreement 
in both cases. It was found that, since the solidity was relatively high in these examples, 
collocation points had to be located closer to the trailing edge in order for our lifting- 
surface computations to agree with both design caaes. 

The present version of the dipole representation of a lifting surface in steady flow 
differs from that of Namba (1972). The differences in the basic solution for the pressure 
field result from the revision of the dipole solution reported here, and also from a 
radially dependent scale factor which he introduced into the superposition of the 
dipole solutions. We have concluded on the basis of the formal development presented 
here that this scale factor should not be included. 

The work described in this paper was supported by the Air Force Aero-Propulsion 
Laboratory under Contract F33615-73-c-2046, The authors wish to thank Drs J. C. 
Erickson, Jr ,  J. P. Nenni and W. J. Rae for helpful discussions held during the course 
of this work. 

Appendix A. Mass and momentum balances for the flow-field solutions 
It has been shown that the singularity and rotorflow-field solutions give the correct 

mass addition rate riz, axial component of the net force on the fluid F,, and axial 
component of the torque T,, The control volume for which these checks were made is 
bounded by the duct walls and the annular areas perpendicular to the duct axis a t  
upstream and downstream infinity. Since this control volume rotates with angular 
velocity w (in the negative 8 direction), the conservation laws for a non-inertial 
reference frame must be used. The appropriate integral forms of the equations for 
conservation of mass, momentum, and angular momentum for such a control volume 
have been taken from Shames (1962). Then, these equations have been linearized so 
that they are expressed in terms of the undisturbed flow properties pm, U and w, 
and the perturbation quantities p, p, v,., w, and w,. These equations were specialized 
further to account for the fact that all the flow-field solutions decay at upstream 
infinity and satisfy the boundary condition of no flow through the duct walls. Attention 
has been confined to the expressions for mass conservation and to the axial components 
of the momentum and angular momentum balances. Under the present set of assump- 
tions, the expressions for h, F,, and T, in terms of the flow field variables become 
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Appendix B. Summation of the series Sn(ryro) 
The series defined in (88) appears repeatedly in the expressions for the surface 

velocity components. Its summation in terms of modified Bessel functions, aa accom- 
plished by Salaun (1974), provides the key to demonstrating the equivalence of the 
dipole and vortex representations of the lifting surface. If we differentiate the series 
twice with respect to a, use the Fourier-Bessel expansion for B(r - yo), and introduce 
the notation an = w / U  then the following Werential equation is obtained for Isn : 

This equation is solved subject to the hard-wall boundary conditions, i.e., that 
dSn/dun vanish at the inner and outer duct walls, un = unR and unF. Moreover, 8, 
is required to be continuous at un = u,,,, and dSn/dun satisfies the following jump 
condition at un = u,,,,, which is derived by integrating the governing differential 
equation from u,,,, - E to urn + E ,  

The modified Bessel functions In(un) and K(un) are linearly independent solutions 
of the homogeneous equation for S,. For an < u,,,,, m u m e  

fln(un, uno) = c3(unO) In(un) +c,(~n,,) Kn(un)* (B 4) 

The solution which satisfies all of the above boundary conditions is 

and the primes denote differentiation with respect to the argument. 
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